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In a frequency range where a microwave resonator simulates a chaotic quantum billiard, we have measured
moduli and phases of reflection and transmission amplitudes in the regimes of both isolated and of weakly
overlapping resonances and for resonators with and without time-reversal invariance. Statistical measures for
S-matrix fluctuations were determined from the data and compared with extant and/or newly derived theoret-
ical results obtained from the random-matrix approach to quantum chaotic scattering. The latter contained a
small number of fit parameters. The large data sets taken made it possible to test the theoretical expressions
with unprecedented accuracy. The theory is confirmed by both a goodness-of-fit-test and the agreement of
predicted values for those statistical measures that were not used for the fits, with the data.
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I. INTRODUCTION

Microwave resonators, also known as “microwave bil-
liards,” are ideal systems to study properties of chaotic quan-
tum systems �1–5�. Most studies have focused on the statis-
tical properties of eigenvalues and eigenfunctions, especially
on tests of the Bohigas-Giannoni-Schmit �6–9� conjecture.
According to that conjecture, the spectral fluctuation proper-
ties of quantum systems with chaotic classical dynamics co-
incide with those of random-matrix ensembles belonging to
the same symmetry class. That statement holds up to level
spacings determined by the period of the shortest periodic
orbit of the system. We comment on that point below. Data
are taken by coupling the resonators via one or several an-
tennas to sources or sinks of a microwave power supply.
Because of this arrangement, microwave resonators can also
be viewed as open quantum systems, and measurements of
the reflected and transmitted intensity amplitudes provide ge-
neric information on chaotic quantum scattering, each an-
tenna acting as a single scattering channel �10�.

In this paper we report on measurements of the complex
transmission and reflection amplitudes of chaotic microwave
billiards, and on the theoretical analysis of such data. For the
latter we use the generic approach to chaotic quantum scat-
tering based on random-matrix theory �RMT�. We have used
two types of microwave resonators. In the first one, time-
reversal �T� invariance holds and in the second one, it is
violated by placing a magnetized ferrite within the cavity.
The large set of scattering data taken with either device �con-
siderably larger than data sets collected, for instance, in
nuclear physics� allows us to test the RMT approach to cha-
otic scattering with unprecedented accuracy, both for systems
that are T invariant and for those that are not. Most experi-
mental investigations of chaotic scattering have been re-
stricted to measure cross sections rather than individual ele-
ments of the scattering matrix S. In our setup we use a vector

network analyzer to actually measure modulus and phase of
the reflected and of the transmitted amplitudes and, thus, of
individual S-matrix elements. The additional information
garnered in this way increases the significance of our tests. In
addition to testing the RMT approach to chaotic scattering,
we propose and test a method for the determination of the
strength of T violation from data on S-matrix correlation
functions. This is of particular significance for those chaotic
quantum scattering systems for which the relevant param-
eters cannot be determined easily by dynamical calculations
such as the semiclassical approximation �11�. Some of our
results have already briefly been reported in Refs. �12,13�.

For T-invariant systems statistical cross-section fluctua-
tions have been thoroughly investigated experimentally and
compared with theoretical predictions in the regime of iso-
lated nuclear resonances �14� �average resonance spacing d
very large compared to average resonance width �� and in
the Ericson regime �15� ���d�, especially in nuclei �16�,
but also in several other systems �17–19�. We are not
aware of similarly extended and precise tests of the
RMT approach to chaotic scattering in the regime of
weakly overlapping resonances ���d�. Our work is in-
tended to fill that gap. T-invariance violation was tested in
nuclear spectra �20� and for the Ericson regime in
compound-nuclear reactions �21–25�. Upper bounds on the
strength of the T-invariance-violating interaction were de-
duced in both cases. T-invariance violation caused by an ex-
ternal magnetic field has also been studied in electron trans-
port through quantum dots �26� and other devices �27� and in
ultrasound transmission in rotational flows �28�. The RMT
approach to T-invariance violation �24,26� used in some of
these papers is likewise tested very precisely in the present
paper.

The theoretical approach to chaotic scattering is based on
an expression for the S-matrix originally derived in the con-
text of nuclear physics �29�. That expression contains explic-
itly the Hamiltonian matrix of the system. Replacing the ac-
tual Hamiltonian by a T-invariant random-matrix ensemble,
one generates an ensemble of S matrices which describes
generic features of chaotic scattering. Analytical expressions*richter@ikp.tu-darmstadt.de
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for the S-matrix correlation functions of that ensemble which
apply for all values of � /d have been derived �30�. These are
used in our analysis. Replacing the Hamiltonian by an en-
semble of random matrices with partially broken T invari-
ance �31�, one similarly generates an ensemble of S matrices
that describes generic features of chaotic scattering with bro-
ken T invariance. Some properties of that ensemble have
been worked out previously �26,32�. To compare with our
data we had to extend the theoretical results. This work is
also reported in the present paper.

The paper is organized as follows. In Sec. II we describe
the experimental setup and some typical results. In Sec. III
we define the statistical measures in terms of S-matrix ele-
ments and use these to analyze the data. In particular, we
define a measure that quantifies the strength of T-invariance
violation. In Sec. IV and in the Appendix we sketch the
derivation of analytic expressions for the statistical mea-
sures. We use the method of Ref. �26�. The theory contains a
number of parameters. These are fitted to data. We test the
theory with the help of a goodness-of-fit �GOF� test in Sec.
V D. The basic assumption for the applicability of the GOF
test is that the distribution of the Fourier-transformed
S-matrix elements is Gaussian and uncorrelated. In Sec. V
we demonstrate the validity of that assumption for chaotic
scattering systems. In the case of T-invariance violation, we
test the theory further by comparing experimental values for
the elastic enhancement factor and for the distribution of the
diagonal S-matrix elements with theoretical predictions
based on parameter fits to other observables.

II. EXPERIMENT

For an experimental study of universal fluctuation proper-
ties of chaotic scattering systems we used flat, cylindrical
microwave resonators with the emitting and receiving anten-
nas acting as single scattering channels. As long as the exci-
tation frequency f is chosen below fmax=c0 / �2h�, where h is
the height of the resonator and c0 is the speed of light, only
transverse magnetic TM0 modes can be excited, and the elec-
trical field vector is perpendicular to the top and the bottom
plates of the resonator. Then, the associated Helmholtz equa-
tion for the electric field strength is scalar and mathemati-
cally identical to the two-dimensional Schrödinger equation
of a particle elastically reflected by the contour of the micro-
wave resonator, i.e., of a quantum billiard �1�. The experi-
ments were performed with resonators whose contour has the
shape of a tilted stadium billiard �33�. That shape was chosen
to avoid bouncing-ball orbits. Each microwave resonator was
constructed from three metallic plates. The bottom and the
top of the resonator are formed by two 5 mm thick high-
purity copper plates. The center plate had a hole in the shape
of a tilted quarter stadium. The thickness of that plate deter-
mined the height of the resonator and differed for the two
experiments. The quality factor Q increases with the height
of the resonator. Thus, to ensure a high Q value the center
plate for the T-invariant case had a thickness of 14.6 mm �so
that fmax=10.3 GHz�. The plate was made of brass �12� to
technically permit the cutting-out of the hole. For the case
with broken T invariance a copper plate with a thickness of

5.0 mm, which coincided with the height of the ferrite de-
scribed below, was used �so that fmax=30.0 GHz�, see Ref.
�13�. In order to make sure that only TM0 modes are excited,
the excitation frequency f was actually chosen �25 GHz.
Screws through the top, middle and bottom plates ensured
the good electrical contact needed to achieve high-quality
values of the resonator. Two thin wires �diameter about 0.5
mm� intrude 2.5 mm into the cavity through small holes
�diameter about 2 mm� drilled into the lid of the resonator.
They act as dipole antennas to couple the rf power into and
out of the resonator. A vector network analyzer �VNA� pro-
vided the rf signal at a variable frequency f and recorded the
signal received at the same �other� antenna for reflection
�transmission� measurements. The two signals were com-
pared by the VNA in amplitude and phase to determine the
complex-valued S-matrix elements. These formed the data
set for our analysis. The cavity is schematically shown in
Fig. 1.

For a precise experimental determination of the elements
of the S-matrix all systematic and statistical errors must be
minimized. The coaxial lines connecting the VNA with the
cavity are the dominant source for systematic errors. They
attenuate and reflect the rf signal. Both effects were removed
by a proper calibration of the VNA. Systematic errors are
also caused by the transmission properties of the two anten-
nas. To account for these, the reflection spectrum of a small
cylindrical resonator �diameter 5 mm, depth 20 mm� was
measured using the same antenna geometry as in the actual
experiment. The first resonance is located well above 30
GHz. Thus, in the frequency range of interest and for an
ideal coupling of the antennas to the resonator all rf power
would be reflected. Any deviation from this expectation was
attributed to the antennas. The resulting correction was ap-
plied to the measured spectra in the actual experiments. The
corrected values of the reflection and transmission spectra
with the two antennas 1 and 2 provided the elements S11, S12,
S21, and S22 of the complex 2�2 S matrix as functions of the
frequency f . The frequency step size �f was �100 kHz.
Typical measured reflection and transmission spectra are
shown in Fig. 2. For the measurement of the S-matrix ele-
ment S11�f� antenna 1 was used as emitting and receiving
antenna, for that of S12�f� antenna 2 was used as emitting,
antenna 1 as receiving antenna, etc. Figure 2 shows that at
low excitation frequencies the resonances of the billiard are
isolated, i.e. the mean resonance width � and the correlation
width �, is small compared to the mean level spacing d.

FIG. 1. The tilted stadium billiard �schematic�. The two anten-
nas 1, 2 connect the resonator to the VNA. Optionally a ferrite is
inserted at a fixed location to violate T invariance and/or a movable
scatterer is used to gather independent data sets �see main text�.
Taken from Ref. �13�.
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Since it is a difficult if not impossible task to determine the
resonance widths in the regime of overlapping resonances
whereas the correlation width � can be well estimated from
the data using the Weisskopf formula �36� given in Eq. �28�
below �for more details see Sec. IV B�, we refer to the latter
in the following. As f increases, so does the ratio � /d, and
the resonances begin to overlap.

The statistical errors of a single measurement caused by
thermal fluctuations were reduced by an internal averaging
routine of the VNA. The resulting errors were several orders
of magnitude smaller than the signal and, thus, negligible.
The data were analyzed in frequency intervals of 1 GHz
length yielding M �104 data points each. The limited num-
ber of statistically independent data points in every such fre-
quency interval causes finite-range-of-data �FRD� errors. To
increase the number of data points and to reduce the FRD
errors �34,35�, in some of the experiments a small scatterer
�an iron disc, 20 mm diameter� was introduced into the mi-
crowave resonator �see Fig. 1� and moved to six different
positions. We then speak of different realizations of the scat-
tering system.

Experiments with violated T invariance were done with a
magnetized ferrite embedded within the resonator. Such in-
duced time-reversal-invariance violation �TRIV� has been
studied in numerous works �13,37–42�. The ferrite has a cy-
lindrical shape �4 mm diameter, 5 mm height�, a saturation
magnetization 4�MS=1859 Oe, and a linewidth �H
=17.5 Oe, with 1 Oe=1000 /4� A /m. It was provided by
courtesy of AFT Materials GmbH �Backnang, Germany�.
Two NdFeB magnets �cylindrical shape, 20 mm diameter
and 10 mm height� were placed outside the billiard at the
position of the ferrite to provide the required magnetic fields
perpendicular to the top and bottom plates of the resonator.
The distance between the magnets and the ferrite could be
adjusted by a screw thread mechanism, and field strengths of
up to 360 mT could be achieved at the position of the ferrite.
With this setup TRIV is induced via the following mecha-
nism. Because of the external magnetic field B the ferrite
effectively acquires a macroscopic magnetization M that pre-
cesses with the Larmor frequency �0 around B. This is the

origin of the ferromagnetic resonance. The rf magnetic field
inside the cavity is elliptically polarized and can be decom-
posed into two field components of opposite circular polar-
ization with, in general, different amplitudes. Due to the Lar-
mor precession of the magnetization M the spins of the
ferrite couple differently to the two magnetic field compo-
nents. A reversal of time, simulated by an interchange of the
input and output channels, swaps the rotational sense of the
two field components and thus, due to their different ampli-
tudes, effectively changes the coupling of the ferrite to the
resonator mode. The induced TRIV is strongest if the fre-
quency f is close to that of the ferromagnetic resonance. The
experiments with the embedded ferrite demanded a reduction
of the height of the resonator to 5 mm, as the ferrite itself
was only 5 mm in height.

In a T-invariant system, the scattering matrix is symmet-
ric, S12=S21. We refer to that property as reciprocity. Viola-
tion of reciprocity is the hallmark of TRIV. In the setup with-
out ferrite the transmission spectrum for S21�f� is
indistinguishable from that for S12�f� and reciprocity holds
within the limits given by thermal noise �see left panels of
Fig. 3�. Typical transmission spectra of the billiard with fer-
rite and an external magnetic field of B=190 mT are shown
in the right panel Fig. 3. The two graphs in the upper panels
correspond to �S12�2 and �S21�2, in the lower panel their dif-
ference is shown. Figure 3 demonstrates that reciprocity is
violated.

III. STATISTICAL MEASURES

In the present section we define the statistical measures
and use them to analyze the data. As pointed out in the In-
troduction, it is our aim to use the data for a detailed and
accurate test of random-matrix theory. Our measures are tai-
lored to this objective. They do not address properties of
individual resonances but instead correlation properties of
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the fluctuating part of S-matrix elements Sab�f� where a and
b take either of the values 1 and 2.

A. S-matrix correlation functions

We decompose the frequency-dependent S-matrix into an
average and a fluctuating part,

Sab�f� = �Sab	 + Sab
fl �f� . �1�

Here and in what follows, the angular brackets � . . . 	 denote
an average over a suitable frequency interval. In order to
ensure a more or less constant coupling of the electric field
modes to the antennas and to the walls of the resonator we
have always used intervals of 1 GHz length.

The autocorrelation function of Sab�f� is defined by

Cab�	� = �Sab�f�Sab
� �f + 	�	 − ��Sab�f�	�2 = �Sab

fl �f�Sab
fl��f + 	�	 .

�2�

This function quantifies the correlation between Sab
fl and Sab

fl�

at two different frequencies f and f +	. Figure 4 shows three
examples of autocorrelation functions all obtained from data
for the billiard without ferrite. The rate of decrease in the
functions with increasing 	 depends on the ratio � /d. None
of the functions has the Lorentzian shape predicted by Eric-
son �15� for the regime of strongly overlapping resonances
��d. We show later that the rate of decrease agrees with
random-matrix predictions for the relevant values of � /d.

To quantify TRIV we measure the violation of reciprocity
by the cross-correlation function of S12�f� and S21

� �f�,

Ccross�	� =
Re��S12

fl �f�S21
fl��f + 	�	�


��S12
fl �f��2	��S21

fl �f��2	
. �3�

For a T-invariant system, reciprocity holds, and Ccross�0�=1.
In case of complete TRIV we expect that S12 and S21 are
completely uncorrelated, Ccross�	�=0 for all values of 	.
�This expectation is borne out in Sec. IV, see also Ref. �42�
for a treatment of the two-level case�. In summary we have

Ccross�0� = �1 for T invariance,

0 for complete TRIV.
� �4�

As explained in Sec. II, we have used six realizations to
increase the statistical significance of the data. For each re-
alization the cross-correlation coefficient Ccross�0� was com-
puted and the average over all realizations was taken. For an
external magnetic field of 190 mT the resulting averaged
cross-correlation coefficient is shown in Fig. 5. This coeffi-
cient deviates noticeably from unity around 6, 16, and 24
GHz, indicating TRIV. The first dip can be attributed to the
ferromagnetic resonance which in our case is located at 6.6
GHz. We assume that the other two dips arise from an en-
hancement of the influence of the ferromagnetic resonance
by standing rf magnetic fields inside the ferrite. Yet, the
smallest values �Ccross�0��0.4� obtained are well above
zero. Hence, at a field strength of 190 mT the ferrite induces
only a partial violation of T invariance. This is also found at
the other investigated field strengths up to 340 mT. In Sec.
IV we show that the strength of TRIV can be deduced from
Ccross�0�.

B. Fourier transformation

The measured scattering matrix elements are correlated
for neighboring frequencies f . The correlations result in a
nonzero value of the autocorrelation function defined in Eq.
�2� and depicted in Fig. 4. We show in Sec. V B that after a
Fourier transformation the correlations between data points
at different times can be removed. This facilitates a statisti-
cally sound analysis and is our motivation for using that
transformation. Since Sab�f� is measured at a discrete set of

frequencies, the Fourier coefficients S̃ab�k� are likewise ob-
tained at discrete time points tk=k /�, and the same is true of
the autocorrelation function Cab�	� and its Fourier transform

C̃ab�k�. Here, �=1 GHz is the length of the frequency inter-
val and k=0,1 , . . . ,M −1, see Sec. V A. We simplify the
notation by using as argument of the Fourier transforms the
integer k. According to the Wiener-Khinchin theorem we

have C̃ab�k�= �S̃ab�k��2. Figure 6 shows two examples of

C̃12�k� at different values of � /d for the T-invariant system.
The solid lines in Fig. 6 show a fit of the random-matrix
expression defined in Sec. IV to the data �the fit procedure is
described in Sec. V A� and correspond to the local-in-time
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mean values of the Fourier coefficients. The data are seen to
scatter about their time-dependent mean. In Sec. V B it is
shown that the data points divided by their local mean value
at different times are indeed uncorrelated and that the distri-
bution of the rescaled Fourier coefficients of the autocorre-
lation function is exponential. The decay of the average func-
tion �solid line in Fig. 6� is faster for � /d=0.29 �lower panel,
frequency interval 9–10 GHz� than for � /d=0.02 �upper
panel, frequency interval 3–4 GHz�. This is due to stronger
absorptive losses. In both cases the decay is nonexponential
�and the autocorrelation function is, therefore, not Lorentz-
ian�. At � /d=0.29 and for times larger than about 1000 ns
the decay is dominated by noise. Nevertheless, a decay over
five orders of magnitude is experimentally well established.

C. Elastic enhancement factor

In chaotic scattering, elastic processes are known to be
systematically enhanced over inelastic ones. The effect was
first found in nuclear physics �44–46� but plays a role also in
mesoscopic physics �27�. The enhancement depends on the
degree of T violation. The elastic enhancement factor is de-
fined as

W = 
��S11
fl �2	��S22

fl �2	/��S12
fl �2	 = 
C11�0�C22�0�/C12�0� ,

�5�

where the second equality results from Eq. �2�. In the limits
of isolated resonances with many weakly coupled open chan-
nels and of strongly overlapping resonances the values for W
are �48�

W = �1 + 2/
 for �/d� 1

2/
 for �/d� 1.
� �6�

Here, 
=1 for T-invariant systems and 
=2 for complete
TRIV. The elastic enhancement factor W was determined in
two ways: �i� using the first of Eqs. �5� we calculated the
averages over frequency directly from the experimental val-
ues for Sab�f�. This amounts to determine W from a single
experimental value for each of the autocorrelation functions
C11�0� ,C12�0� ,C22�0�. �ii� In the second of Eqs. �5� we used
the values of the autocorrelation functions obtained by a best
fit of the analytical expression given in Eq. �26� below to the
experimental one. These are the solid lines in Fig. 6. The
method of fit �described in Sec. V A� uses the entire data set
and is, therefore, expected to give more reliable values for
W. This is indeed borne out by the results shown in Figs. 7
and 8. For the T-invariant case shown in Fig. 7 the elastic
enhancement factor decreases from W�3 at low frequencies
���d� to W�2 at high frequencies ���d�, in qualitative
agreement with Eq. �6�.

Results for the billiard with violated T invariance are
shown in Fig. 8. Although W was obtained from a data set of
six realizations, the values obtained with method �i� still
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circles with method �ii� described in the text. The error bars indicate
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show large uncertainties while method �ii� yields reliable re-
sults. Again W displays an overall decrease from 3 to 2 with
increasing � /d. However, at frequencies of about 6, 16, and
24 GHz dips are observed. Around 16 and 24 GHz the values
of W drop below 2. This is not possible for a T-invariant
system. These features are similar to those of the cross-
correlation coefficient in Fig. 5. Both measures indicate a
substantial violation of T-invariance at about 6, 16, and 24
GHz.

IV. THEORY

As stated in the Introduction, it is the aim of the experi-
ments reported and analyzed in this paper to test random-
matrix theory as applied to chaotic scattering systems. Ac-
cording to the Bohigas-Giannoni-Schmit conjecture �7�, the
spectral fluctuation properties of chaotic T-invariant quantum
systems coincide with those of the Gaussian orthogonal en-
semble �GOE�, those of quantum systems with complete
TRIV with those of the Gaussian unitary ensemble �GUE� of
random matrices. Systems with partial violation of T invari-
ance are accordingly described by a crossover from orthogo-
nal to unitary symmetry. For such systems, analytical expres-
sions for central statistical measures of scattering processes
�i.e., the autocorrelation function �2� and the cross-
correlation coefficient �3�� have not been worked out before.
We fill that gap in Sec. IV A.

A. Crossover from orthogonal to unitary symmetry: the
autocorrelation function and the cross-correlation coefficient

For chaotic scattering processes, the GOE→GUE cross-
over was extensively investigated in Ref. �26�. There the
destruction of weak localization by an external magnetic
field in the transmission of electrons through a few-channel
disordered microstructure was determined. The connection
between the conductance g and the S-matrix is given by the
Landauer formula,

g = 
a=1

�/2


b=�/2+1

�

��Sab�2 + �Sba�2� , �7�

where � counts the total number of open channels and an
equal number of incoming and outgoing channels �

2 is as-
sumed. Efetov’s supersymmetry method �49� was used to
calculate ensemble averages of squares of S-matrix elements
Sab for a�b. The S-matrix embodies the GOE→GUE cross-
over in the manner described below. Here we describe the
extension of that approach to the calculation of the autocor-
relation function �2� and the cross-correlation coefficient �3�.
These observables were not considered in Ref. �26�.

We write the unitary scattering matrix in the general form
�29�

Sab�f� = ab − 2�i 
�,�=1

N

Wa��D−1���Wb�, �8�

where the inverse propagator D is given by

D�� = f�� − H�� + i�
c=1

�

Wc�Wc�. �9�

The matrix elements Wa� and Wb� describe the coupling of
antennas a and b with the resonator mode � �42�. The sum
over c in Eq. �9� extends over the two antennas but includes
also a number ��−2� of fictitious channels. The latter de-
scribe Ohmic absorption in the cavity �19�. The matrix H�� is
the Hamiltonian of the closed billiard. It has dimension N
and the limit N→� is eventually taken.

The coupling matrix elements Wc� are chosen real, Wc�
=Wc�

� for all c ,�, and a violation of T invariance by an
external magnetic field is taken into account only in H��. We
also assume that the Wc� are independent of frequency f .
That assumption holds within frequency intervals of 1 GHz
width. The experiment was designed such that direct power
transmission between the antennas is excluded so that the
average S matrix is diagonal. We have verified that fact ex-
perimentally. A diagonal average S matrix is implied by the
relation


�=1

N

Wa�Wb� = Nva
2ab. �10�

The parameter va
2 measures the average strength of the cou-

pling of the resonances to channel a. The Hamiltonian H�� is
a member of a random-matrix ensemble describing partial
violation of T invariance. In random-matrix theory, the
GOE→GUE crossover is written as �31�

H�� = H��
�S� + i

��


N
H��

�A�. �11�

The real and symmetric matrix H�S� is a member of the GOE,
and the elements of the real and antisymmetric matrix H�A�

are uncorrelated Gaussian-distributed random variables.
Thus,

�H��
�S�	 = �H��

�A�	 = 0,

�H��
�S�H����

�S� 	 =
�2

N
������� + ������� ,

�H��
�A�H����

�A� 	 =
�2

N
������� − ������� . �12�

Here � has the dimension energy and for the GOE denotes
half the radius of Wigner’s semicircle. The parameter � mea-
sures the strength of T-invariance violation. For �� /
N=1
the matrix H is a member of the GUE. However, on the local
level �energy intervals measured in units of the mean level
spacing d of the GOE� the transition from GOE to GUE
already takes place when the typical matrix element of the
TRIV term becomes comparable to d=�� /N, i.e. when

��


N

�


N
�
�


N

�


N
�13�

or when ��1. The S-matrix �8� is symmetric only for �=0,
and reciprocity does not hold for ��0.
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Starting with Eq. �1� we have used angular brackets to
denote the running average over �parts of� the experimental
spectra. The averages were actually taken over 1 GHz fre-
quency intervals. Now we consider an ensemble of S-matrix
elements of the form of Eq. �8� obtained by inserting many
realizations of the random Hamiltonian H�� in Eq. �11�. We
denote averages over that ensemble also by angular brackets.
This is legitimate because ergodicity guarantees the equality
of ensemble average and of the running average over a single
realization of the ensemble, see Sec. IIC3 of �47�.

The autocorrelation function for the S matrix defined in
Eq. �8� is known for the case of T invariance ��=0� �30�, for
the case of complete TRIV ��=
N /�� �32� and had to be
calculated for the case of partial TRIV �0���
N /��. For
the first case it reads

Cab
GOE��� =

1

8
�

0

�

d�1�
0

�

d�2�
0

1

d�J��,�1,�2�

� exp�− i
��

d
��1 + �2 + 2���

��
c

1 − Tc�


�1 + Tc�1��1 + Tc�2�
Jab��,�1,�2� .

�14�

The upper index of Cab indicates that an average over the
GOE was taken. The integration measure is given by

J��,�1,�2� =
��1 − ����1 − �2�
�� + �1�2�� + �2�2

�
1


��1�1 + �1��2�1 + �2��
, �15�

and we have

Jab��,�1,�2�

= ab��Saa	�2Ta
2� �1

1 + Ta�1
+

�2

1 + Ta�2
+

2�

1 − Ta�
�2

+ �1 + ab�TaTb� �1�1 + �1�
�1 + Ta�1��1 + Tb�1�

+
�2�1 + �2�

�1 + Ta�2��1 + Tb�2�
+

2��1 − ��
�1 − Ta���1 − Tb��� .

�16�

Here and in Eqs. �19� and �24� below the input parameters
are the mean level spacing d and the transmission coeffi-
cients Tc in all channels c, defined as

Tc = 1 − ��Scc	�2. �17�

We observe that 0�Tc�1. For all three cases the matrix
elements Wc� occur in the final expression for the correlation
functions only via the transmission coefficients. Using the
analytical result for �Saa	= �1−�2vc

2 /d� / �1+�2vc
2 /d� �30�

and Eq. �10� one finds that

Tc =
4�2vc

2/d
�1 + �2vc

2/d�2 . �18�

The choice of the parameters Tc is described in Sec. V A.
The threefold integrals in Eq. �14� and in Eq. �24� below are
numerically computed most conveniently in terms of the in-
tegration variables introduced in Ref. �50�.

For the second case, the S-matrix autocorrelation function
was worked out in Ref. �32�,

Cab
GUE��� = �

0

�

d�1�
0

1

d� exp�− i
2��

d
��1 + ���

��
c

1 − Tc�

1 + Tc�1

�
Ta

�1 + Ta�1��1 − Ta��
Tb

�1 + Tb�1��1 − Tb��

� �ab��Saa	�2 +
1

�1 + �
��1 − � + 1

− �1��Ta + Tb − TaTb��� . �19�

The upper index of Cab now indicates the average over the
GUE.

In our experiments we deal with partial TRIV, i.e., with
the third case and the S-matrix autocorrelation function had
to be calculated for all values of the parameter � introduced
in Eq. �11�. To this end we generalized the work of Ref. �26�.
We present here only the result and defer details to the Ap-
pendix. The autocorrelation function is given in terms of a
threefold integral over integration variables �0, �1, and �2,
see Eq. �2� of Ref. �51�. However, the integrals are evaluated
numerically more conveniently in terms of the integration
variables given in Sec. V of Ref. �50�. For the transformation
to these one needs to distinguish in the integrations over �1
and �2 the case where �1��2 and the case where �1��2.
For instance, for the case �1��2 the transformation to inte-
gration variables � ,�1 ,�2 is given by

�0 = 1 − 2� ,

�1 = 
�1 + �1��1 + �2� + �1�2 + U ,

�2 = 
�1 + �1��1 + �2� + �1�2 − U , �20�

where

U = 2
�1�1 + �1��2�1 + �2� .

Then both, the S-matrix autocorrelation function and the
cross-correlation coefficient are obtained as special cases of a
function Fab

� �	�. With the notations

t = �2�2, �21�

and
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R = 4�� + �1��� + �2� , �22�

F = 4��1 − ��, G = �1
2 − 1, H = �2

2 − 1,

	� = 1� exp�− 2tF� ,

Ãa =
�2 − Ta��2 + Ta�1

4�1 + Ta�1��1 + Ta�2�
,

B̃a =
�2 − Ta��1 + Ta�2

4�1 + Ta�1��1 + Ta�2�
,

C̃a =
1

2

1

1 − Ta�
, C1 =

��1 − ��
�1 − Ta���1 − Tb��

,

C2 =
U
4
� 1

1 + Ta�2

1

1 + Tb�1
+

1

1 + Ta�1

1

1 + Tb�2
� , �23�

the function Fab
� �	� reads

Fab
� ��� =

1

8
�

0

�

d�1�
0

�

d�2�
0

1

d�
J��,�1,�2�

F exp�−
i��

d
��1 + �2 + 2����

c

1 − Tc�


�1 + Tc�1��1 + Tc�2�

��exp�− 2tH� · �Jab��,�1,�2� · �F	+ + ��2
2 − �1

2�	− + 4tR��2
2	− + F�	+ − 1��� + � · 2�1 − ab�TaTbKab� + ��1 ↔ �2�� .

�24�

Here,

Kab = 	−�2tRC1F + 2F��ÃaC̃b + ÃbC̃a�G�2 + �B̃aC̃b + B̃bC̃a�H�1� + 3C1F − C2��2
2 − �1

2� + C2tR�4�2
2 − 2F��

+ �	+ −
	−

tF��3C1��2
2 − �1

2� + tRC1�4�2
2 − 2F� + 2F��ÃaC̃b + ÃbC̃a�G�2 − �B̃aC̃b + B̃bC̃a�H�1� + �2tR − 1�C2F� .

�25�

The integration measure J�� ,�1 ,�2� and the function
Jab�� ,�1 ,�2� are given explicitly in Eqs. �15� and �16�. Set-
ting �=+ ��=−� in Eq. �24� yields the autocorrelation func-
tion �the cross-correlation coefficient�,

Cab��� = Fab
+ ��� , �26�

Ccross�� = 0� = Fab
− �� = 0� . �27�

We observe that for �=0, i.e., t=0, the function Kab defined
in Eq. �25� vanishes and Fab

+ ��� in Eq. �24� turns into the
autocorrelation function of the GOE given in Eq. �14�. We
checked our analytical results by comparison with RMT
simulations. In Fig. 9 we show the cross-correlation coeffi-

cient versus � as obtained analytically and by RMT simula-
tion for a typical set of transmission coefficients. We also
indicate how the analytical result is used to determine the
value of � from a measured value of the cross-correlation
coefficient. To test the validity of Eq. �24� we compare in
Figs. 10 and 11 analytic results for the autocorrelation func-
tions with numerical simulations, both in the frequency and
in the time domains. The parameter �abs measures absorption
and is defined in Sec. IV B below. In all cases, the agreement
is very good.

The theoretical expressions given in Eqs. �14�, �19�, and
�24� are obtained as averages over the ensemble of Hamil-
tonian matrices defined in Eq. �11� in the limit N→� and
directly yield the autocorrelation function. In contrast, Fig. 4

0.0

0.5

1.0

0.0 0.5 1.0

C
cr

os
s

ξ

FIG. 9. Dependence of the cross-correlation coefficient Ccross�0�
on the parameter � as predicted by a random-matrix model for par-
tial violation of T invariance. The analytic result �line� is compared
with an RMT simulation �dots� for the same set of transmission
coefficients. Also shown is how an experimental value of Ccross�0�
=0.49�3�, c.f. Fig. 5, translates into �=0.29�2�. Based on Ref. �13�.
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|C
11
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FIG. 10. Comparison of the analytic result for the autocorrela-
tion function C11 versus 	 for transmission coefficients T1=0.407,
T2=0.346, �abs=2.41, and TRIV parameter �=0.293 �solid line�
with RMT simulations �dots�. We show only the result for C11 as
that for C12 is barely distinguishable. The curve is normalized such
that it equals unity for 	=0.
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shows autocorrelation functions obtained by averaging the
data in a frequency interval of 1 GHz width. For conceptual
clarity we distinguish both cases by referring to the theoret-
ical and to the experimental autocorrelation functions, re-
spectively.

B. Parameters

The parameters in Eqs. �14�, �19�, and �24� are the aver-
age level spacing d, the transmission coefficients Tc for all
channels c, and the parameter � for TRIV. We have calcu-
lated d from the Weyl formula �43�. A starting value for the
parameter � was determined from the experimental cross-
correlation coefficients shown in Fig. 5 as described in the
caption of Fig. 9. Here we use that the cross-correlation co-
efficient depends only weakly on the transmission coeffi-
cients in the frequency range 1–25 GHz. Results are shown
in Fig. 12. The largest value of � is ��0.3. In determining Tc
by fitting the theoretical expressions for the autocorrelation
function to the data, we also use � as fit parameter, with
starting value as just described. For the channels c=1 and
c=2, i.e., for the antennas, we also have determined starting
values from the definition Eq. �17� and from the measured
values of S11�f� and S22�f�. The fits discussed in Sec. V
yielded T1, T2 within 5% of these starting values. The re-
maining transmission coefficients describe Ohmic absorption
in the walls of the resonator and the ferrite. If Tc�1 for all
absorbing channels, the products over these channels appear-
ing in Eqs. �14�, �19�, and �24� simplify so that each of the
three theoretical autocorrelation functions depends only on
the sum �abs of the transmission coefficients for the absorbing
channels. Accordingly, in addition to T1, T2, and � the pa-

rameter �abs was used as fitting parameter. To estimate the
correlation width � of the resonances, we have used the
Weisskopf formula �36�

2�
�

d
= 

c

Tc = T1 + T2 + �abs. �28�

and the fitted values for T1, T2, and �abs. Using numerical
simulations and with help of the analytic result Eq. �14� for
the autocorrelation function we checked that this formula
indeed yields a very good estimate for the correlation length
even in the regime of weakly overlapping resonances and for
a few open channels. The results of our fits �each done in a
frequency interval of 1 GHz length� are displayed in Figs. 13
and 14. We show � /d as obtained from Eq. �28� �top panel�,
�abs �middle panel� and T1 and T2 �bottom panel� versus fre-
quency for the case without and with TRIV, respectively. The
transmission coefficients and �abs generally increase with fre-
quency. We note that without the ferrite � /d never exceeds
the value 0.3 �regime of weakly overlapping resonances�
since the excitation frequency must be chosen below fmax
=10.3 GHz, whereas in the system with ferrite we have
fmax=30 GHz and thus � /d attains values as large as 1.2.

C. Distribution of S-matrix elements

The distribution of S-matrix elements is not known com-
pletely in analytical form, neither for the T-invariant system

0.0

0.1

0.2

0 50 100 150

C~
ab

(t
)

t (ns)

FIG. 11. Comparison of the analytic results for the Fourier
transform of the autocorrelation function versus time t for transmis-
sion coefficients T1=0.407, T2=0.346, �abs=2.41 and TRIV param-

eter �=0.293 to RMT simulations. We show the results for C̃ab for
a=b=1 �dashed line and filled points� and a=1, b=2 �solid line
and crosses, respectively�.
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FIG. 12. Values of the TRIV parameter � for the billiard with the
ferrite magnetized with B=190 mT. The error bars indicate the
variability of the results within the six realizations.
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FIG. 13. � /d �top panel�, �abs �middle panel� and the transmis-
sion coefficients T1 �filled circles� and T2 �open circles� �bottom
panel� versus frequency for the billiard with T invariance. The er-
rors are typically of the size of the symbols.
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FIG. 14. The same as in Fig. 13 but for the billiard with the
ferrite, obtained as averages over six realizations. The scatter of the
values for different realizations about the mean value is typically of
the order of the symbol size.
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nor for TRIV. The most complete information is available in
the regime of strongly overlapping resonances �� /d�1�. In
a basis in channel space where �Sab	 is diagonal, the inelastic
S-matrix elements Sab=Sab

fl with a�b have a bivariate
Gaussian distribution �52�. Thus the phase of Sab is uni-
formly distributed in the interval �−� ,��. The distribution
function P of the modulus r= �Sab� depends only on the ratio
z=r / ���Sab�2	�1/2 and is given by

P�z� =
�

2
z exp�−

�

4
z2� . �29�

The diagonal elements Saa have a bivariate Gaussian distri-
bution only for ��d and only if ��Saa	��1. Otherwise, uni-
tarity constraints cause the distribution to differ from the
Gaussian form �53–55�.

In Ref. �32� an analytic expression for the distribution of
the elastic elements Saa of the scattering matrix of a generic
chaotic system without or with partially violated T invari-
ance was derived. It applies for cases with many open chan-
nels. With the notation

Saa = 
raei�a, xa =
ra + 1

ra − 1
, ga =

2

Ta
− 1, �30�

the distribution P�xa ,�a� of Saa is given by

P�xa,�a� =
1

2�

d

dy
�y2 − 1���dfa�y�

dy
�

y=xaga+
xa
2−1
ga

2−1 cos �a

.

�31�

With the help of the transformation Eq. �20�, the definitions
�23� and with w= �y−1� /2 the analytic expression for the
function fa�y� given in Ref. �32� may be cast into the form

fa�y� =
1

4
�

0

wc

d�2�
wc

�

d�1�
0

1

d�
J��,�1,�2�

F

� exp�−
�abs

2
��1 + �2 + 2��� w + �


�w − �1���2 − w�

��
c�a

1 − Tc�


�1 + Tc�1��1 + Tc�2�

��exp�− 2tH� · �F	+ + ��2
2 − �1

2�	− + 4tR��2
2	−

+ F�	+ − 1��� + ��1 ↔ �2�� . �32�

For T-invariant systems the threefold integral can be simpli-
fied, and P�xa ,�a� takes the form

P�xa,�a� =
1

4�

d

dy
�1 + y����abs�K1�w�J2�w� + K2�w�J1�w�� + 

c=1

�

tc
a�L1

c�w�H2
c�w� + L2

c�w�H1
c�w����y=xaga+
xa

2−1
ga
2−1 cos �a

.

�33�

Here, tc
a=1 for c=a and tc

a=Tc otherwise, � is the number of
open channels and

J1�w� = �
w

�

dy
e−�absy/2


y�y − w�
�
d=1

�
1


1 + td
ay

,

H1
c�w� = �

w

�

dy
e−�absy/2


y�y − w�
�
d=1

�
1


1 + td
ay

1

1 + tc
ay

,

K1�w� = �
w

�

dye−�absy/2

y�y − w�

�d=1
� 
1 + td

ay
� e−�abs

y + 1�
d=1

�

�1 − td
a� −

1

y

+ 
b=1

�
tb
a2

1 + tb
ay
�

0

1

d�0e−�abs�0 �
d�b

�

�1 − td
a�0�� ,

L1
c�w� = �

w

�

dye−�absy/2

y�y − w�

�d=1
� 
1 + td

ay
� e−�abs

y + 1 �
d�c

�

�1 − td
a� −

1

y

+ 
b�c

tb
a2

1 + tb
ay
�

0

1

d�0e−�abs�0 �
d�b,c

�

�1 − td
a�0�� . �34�

The corresponding functions with index 2 are given by the
same expression except that the integration limits w ,� have
to be replaced by 0,w.

These analytic results were previously tested experimen-
tally for the case of a single open channel plus absorption in
Refs. �18,56–59�. In Fig. 15 we compare for several fre-
quency intervals the experimental distributions of the elastic
S-matrix element S11 with the theoretical predictions for the
case of two open channels with absorption. The data were
taken with the billiard used for the experiments with partial
TRIV but without the ferrite �60,61�. This was done because
that billiard has a smaller height so that the range where only
a single vertical mode is excited, extends up to 30 GHz.
Higher values of the frequency result in larger absorption
and in larger values of � /d. It is here that the theoretical
result �33� is expected to apply. The value of � /d was deter-
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mined from the Weisskopf formula given in Eq. �28� and
from the values of T1 ,T2 ,�abs obtained from a fit of the Fou-
rier transform of the S-matrix autocorrelation function as de-
scribed in Sec. V. The very good agreement corroborates the
precision of the fitting procedure and of the GOF test dis-
cussed below. Note that the distributions are very far from a
bivariate Gaussian distribution.

An analytic expression for the distribution of the off-
diagonal elements of the S matrix exists in the Ericson re-
gime ��d, however not in the range of � /d achieved in the
experiments. In Fig. 16 we, therefore, compare experimental
distributions to RMT simulations. We note again the good
agreement. In the frequency range 23–24 GHz �where � /d
�1.01� the distribution of �S12� is well described by Eq. �29�,
and the distribution of the phases is nearly uniform. Thus, in
this frequency range the distribution of the nondiagonal
S-matrix elements is already close to that expected in the

Ericson regime while that of the diagonal elements is still far
from Gaussian.

V. DATA FITS AND DISTRIBUTION OF FOURIER
COEFFICIENTS

In the present section we test predictions of random-
matrix theory with the experimental data. We proceed as fol-
lows. Using the results of Sec. III B, we fit the parameters of
the Fourier transforms of the theoretical expressions for the
autocorrelation functions �Eqs. �14� and �24�� to the data. We
show that within the accuracy of the data and after rescaling,
the distribution of the Fourier-transformed S-matrix elements
is Gaussian. This property is used to develop a goodness-of-
fit �GOF� test that quantitatively tests the quality of RMT
predictions. As a second test of RMT we compare predicted
values of the elastic enhancement factors with the data.

In Sec. IV C we have shown that the real and imaginary
parts of the S-matrix elements in general do not have a
Gaussian distribution. How can this fact be reconciled
with the statement just made that the Fourier-transformed
S-matrix elements do have such a distribution? The Fourier
transform is a linear transformation, after all. We answer that
question as we proceed.

A. Fits

We focus attention on the fluctuating part Sfl�f� of the
S-matrix elements �see Eq. �1�� and omit the indices a and b
for brevity. By definition we have �Sfl�f�	=0. Data are taken
at frequency increments ��100 kHz. The mean level spac-
ing d, the transmission coefficients T1 and T2, and the ab-
sorption coefficient �abs are typically constant in frequency
intervals of 1 GHz width. In every such interval we have
M �104 measured values of Sfl�f� for all combinations of
channel indices a ,b. We write f j = f0+ j� where f0 is the
frequency at the lower end of the interval and j
=0,1 ,2 , . . . , �M −1�. We use discrete Fourier transformation
and define

S̃k = 
j=0

M−1

e−2�ikj/MSfl�f j�, k = 0, . . . ,M − 1, �35�

so that

Sfl�f j� =
1

M

k=0

M−1

e2�ikj/MS̃k, j = 0, . . . ,M − 1. �36�

We fit the parameters in the theoretical expressions �14� and

�24� to the distribution of the squares xk= �S̃k�2 of these Fou-
rier coefficients. The Wiener-Khinchin theorem states that

the latter are equal to the Fourier coefficients C̃�k� of the
experimental autocorrelation functions C�	�. We accordingly

calculate the Fourier transforms C̃�k� of the theoretical auto-
correlation functions in Eqs. �14� and �24� at the same dis-
crete values of k as occur in the discrete Fourier transforma-
tion in Eq. �35�. The parameters are the transmission
coefficients T1, T2, �abs, and �. For the transmission coeffi-
cients T1 and T2 we used Eq. �17� with experimental values
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for �Saa	 and a=1,2 as starting points but allowed the values
of T1 and T2 to vary. The best-fit values differed by no more
than 5% from the starting values. For � a starting value was
obtained from a comparison of the experimental and the ana-
lytic cross-correlation coefficients as outlined in Sec. IV B.
For the fit parameter �abs no starting values could be com-
puted from the measured data. The fit yields the solid lines
shown in Fig. 6 and defines �xk	. We observe that �xk	 de-
creases by several orders of magnitude over the available
range of k values. We also observe that for k�k� the Fourier

coefficients S̃k and S̃k� are uncorrelated. This follows from
the fact that the autocorrelation functions depend only on the
difference 	 of the two frequency arguments and is shown
below in Eq. �39�.

As stated in the Introduction, the use of generic expres-
sions derived from RMT is justified only for energy spacings
bounded from above by the period of the shortest periodic
orbit in the classical microwave billiard. Therefore, Fourier
coefficients are generic only for times larger than the repeti-
tion time of the shortest periodic orbit We have estimated
that time and found it to be smaller than the time-index k

=5 of S̃k in Eq. �35�. We note, however, that the average
S-matrix elements �which correspond to k=0� are not ge-
neric. This is mirrored by the fact that these are used as input
parameters in our analysis.

B. Gaussian distribution

We ask: How are the �S̃k�2 distributed about their mean
values determined by the fits? In order to study the distribu-

tion of the S̃k and of the coefficients xk= �S̃k�2 with good sta-
tistics, we must sample all data points shown in Fig. 6. To
this end we remove the strong and systematic k dependence

by rescaling: we divide S̃k by 
�xk	 and xk by �xk	 and find

that the renormalized S-matrix elements S̃k /
�xk	 have a bi-
variate Gaussian distribution both for the elastic �case shown
in Fig. 17� and the inelastic one �shown in Fig. 18�. The

left-hand side of Fig. 19 shows that after rescaling of the xk
the logarithms of the rescaled coefficients zk=xk / �xk	 scatter
about zero. Moreover we find that the distribution of the zk is
stationary in k. By this we mean that the distribution of the zk
determined from sampling their values within some interval
of length k�M does not depend on the choice or length of
that interval. The statistical accuracy of that statement is ob-
viously limited by the fact that the number of data points
contained in the interval decreases with decreasing length k.
Stationarity allows us to study the joint distribution function
of all zk obtained from S-matrix data that lie within a fre-
quency interval of length 1 GHz. That step improves the
statistical accuracy of the result.

The right-hand side of Fig. 19 shows that the coefficients
zk have an exponential distribution, as expected for the abso-
lute squares of variables with a bivariate Gaussian distribu-
tion. To test this statement quantitatively we observe that for
an exponential distribution the ratio �zk

2	 / �zk	2 should have
the value two. For our finite data set we define

M1 =
1

M

k=0

M−1

zk, M2 =
1

M

k=0

M−1

zk
2 �37�

and obtain for the variance of M2 /M1
2
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��M2

M1
2 − 2�2� =

9

M
. �38�

Evaluation of that ratio for the data set in the range 16–17
GHz shown in Fig. 19 with 6 realizations gives M2 /M1

2

=1.97, which is within the defined error limits �2�0.09� for
the M =6�200=1200 contributing data points. A systematic
analysis of our data ensemble for all 24 frequency intervals
between 1 and 25 GHz yields 13 accepted and 11 rejected
ratios, i.e., 54% of all frequency intervals are within the 1-�
range defined by Eq. �38�. In the range 10–25 GHz the ac-
ceptance ratio increases to 80%. This is well above the ex-
pected 1-� value of approximately 68%.

C. Analysis

The results displayed in Fig. 19 are puzzling. The ele-
ments of S�f� are correlated over a frequency range �. They
do not follow a Gaussian distribution. There are nontrivial
higher-order correlations. On the other hand, there exists no
discernible correlation among the rescaled Fourier coeffi-
cients zk, and these are consistent with a bivariate Gaussian

distribution for S̃k /
�xk	. How is it possible that a non-
Gaussian distribution becomes Gaussian after Fourier trans-
formation and rescaling?

We first show that rescaling removes binary correlations.
For simplicity, we do so for the case of a continuous fre-
quency f ranging over the entire real axis. For clarity, we
distinguish the ensemble average �indicated by an overbar�
from the running average over the spectrum of a single real-
ization �indicated by angular brackets�.

Without rescaling, the distribution of S̃�k� would obvi-
ously not be Gaussian. Moreover, rescaling does indeed re-
move all correlations between pairs of S-matrix elements. To
see this, we calculate the correlation function of two Fourier-
transformed S-matrix elements, using the translational invari-
ance of the two-point correlation function �Sfl�f1�Sfl��f2�
=Sfl�f1+x�Sfl��f2+x�=g2�f1− f2� for all real x�. That gives

S̃�k1�S̃��k2� = 2��k1 − k2�g̃2�k1� . �39�

The Fourier transform g̃2�0 of g2 determines only the aver-

age value of �S̃�k��2; pairs of Fourier-transformed S-matrix
elements with different arguments are uncorrelated. We

Fourier-transform S̃�k� /
g̃2�k� back to the frequency domain
and find that the correlation function of a pair of Fourier-
back-transforms is a delta function in frequency. Thus, the
binary correlation has been removed by rescaling. Put differ-

ently, we may consider the quantities S̃�k� /
g̃2�k� as Fourier
transforms of S-matrix elements that are pairwise uncorre-
lated.

Correlations of higher order �involving more than two
S-matrix elements� imply correlations of higher order of the

elements of S̃fl�k� and of S̃�k� /
g̃2�k�. Such correlations are
not removed by rescaling. But they are made irrelevant by
the way in which the distribution of the zk is sampled. That is
done by considering the index k as a label only. Any relation
to the time scale originally inherent in the Fourier transfor-

mation is lost. We simply order the zk by size, asking how
many occur in each size interval. That yields the distribution
in Fig. 19. The dependence on k is scrambled. It is not pos-
sible from that distribution to reconstruct correlations that
may have existed among its elements.

These arguments do not explain why the distribution of

S̃fl�k� /
�xk	 is Gaussian. �For that we must resort to the law
of large numbers�. But they show why correlations that are
known to exist among the Sfl�f� do not prevent a Gaussian to

emerge for the distribution of the S̃fl�k� /
�xk	.

D. Goodness-of-fit test

To test the quality of the fit of the theoretical autocorrela-
tion functions in Eqs. �14� and �24� to the data, we developed
a goodness-of-fit test. The test applies to uncorrelated data
with an exponential distribution. As shown in Sec. V C that
condition is met by the rescaled experimental Fourier coef-
ficients xk / �xk	. We recall that the mean values �xk	 are de-
termined by fitting a small number of parameters. This ren-
ders the decision nontrivial whether the fit is compatible with
the data. As a measure for the goodness of the fit we used the
expression

I = 
k=0

M−1 � xk

�xk	
− ln

xk

�xk	
− 1� , �40�

which quantifies the difference between the M data points xk
and the best-fit value �xk	 for the theoretical expressions. The
quantity I is non-negative and vanishes exactly if xk= �xk	 for
all k. The expression Eq. �40� is a generalization of the �2

test used for Gaussian data, see Chaps. 14 and 16 of Ref.
�62�. If xk / �xk	 has an exponential distribution then the dis-
tribution of I is given by

P�I� =
1

2�
�

−�

�

d�ei��I+M�� ��1 + i��
�1 + i��1+i��M

. �41�

For our test we approximated P�I� by a chi-squared distribu-
tion ��M� with M degrees of freedom

��M��I�Ī� =
�M/2�M/2

��M/2�Ī
� I

Ī
�M/2−1

exp�−
MI

2Ī
� . �42�

Here, Ī is the expectation value of I and is given by

Ī = M� , �43�

where �=0.577 216 is Euler’s constant. The agreement be-
tween P�I� and ��M� is better than 2%. The same measure I
was used for a goodness-of-fit test in Ref. �12�.

The test procedure is illustrated in Fig. 20. Upon the defi-
nition of a certain threshold K �in the figure: K=0.9� on the
cumulative distribution function a limit RK

2 is obtained �in the

Figure: RK
2 =1.064� which may not be exceeded by I / Ī if the

GOF test is to accept the model. The limit is defined by
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1

Ī
�

0

RK
2

dI��M��I�Ī� = K . �44�

The value of K quantifies the confidence into the test in the
sense that 1−K is the probability to make a wrong decision
by rejecting a valid theory. We choose K=0.9.

In the fitting procedure the Fourier transforms of the the-
oretical autocorrelation functions of the GOE �Eq. �14��, of
the GUE �Eq. �19��, and for the case of partial T-invariance
violation �Eq. �26��, respectively, were fitted to the experi-
mental Fourier coefficients. One example of such a fit is
shown in Fig. 21. In the upper four panels the results are
compared to the data �dots� in the frequency domain. The
lower panel shows the experimental Fourier coefficients
�dots� together with the best fits of the GOE �solid� and the
partial TRIV �dash-dotted� result. We observe that the ex-
perimental Fourier coefficients scatter widely around their
average; the scatter is too large to directly arrive at a con-
clusive decision using the GOF test described above. There-
fore data were taken from a total of six different realizations
of the experiment. Moreover, the theoretical curves lie
very close to each other. This corroborates the need of a
goodness-of-fit test. This GOF test in conjunction with the
enlarged data basis leads to the decision that within the con-
fidence threshold K=0.9 only the expression for partial
TRIV describes the data. The GOE and GUE expressions are
ruled out.

VI. SUMMARY

We have measured reflection and transmission amplitudes
in chaotic microwave billiards with two antennas. The mea-
surements were performed in the regimes of isolated and of
weakly overlapping resonances. Both a T-invariant system
and a system with partially violated T invariance were inves-
tigated. The latter was realized by placing a magnetized fer-

rite within the microwave billiard. The measurements
yielded the moduli and phases of all four elements of the
scattering matrix S�f� in a range of frequencies f limited by
the requirement that only one vertical mode be excited in the
billiard. The frequency range was divided into intervals of 1
GHz width. Within each interval, statistical measures for
S-matrix fluctuations like the Fourier transform of the
S-matrix autocorrelation function, the distribution of
S-matrix elements, or the elastic enhancement factor were
determined from the data.

We compared the results with theoretical expressions
based on random-matrix theory. For T-invariant systems and
for systems with full violation of T invariance these were
given in Refs. �26,30,32� while for systems with partial
T-invariance violation they had to be calculated. This was
done by extending the existing supersymmetry approach.
The parameters of the theory are the transmission coeffi-
cients T1 and T2 for the two antennas, the parameter �abs
describing absorption in the billiard, and the parameter � for
the strength of T-invariance violation. Starting values for
these were partly obtained directly from the data, but final
values were always determined from fits of the RMT expres-
sions to some of the experimental measures.

The large data sets taken made it possible to test the the-
oretical expressions with unprecedented accuracy. The out-
come of these tests is recapitulated in Table I. In particular,
we used the following stringent tests.

�i� Goodness-of-fit �GOF� test. For the T-invariant system,
that test accepted the fit of the theoretical result for the
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Fourier-transformed autocorrelation function to the experi-
mental data in all 1 GHz intervals. In the case of
T-invariance violation, the GOF test was applied to data fits
of RMT expressions for all three cases, i.e., the one for
T-invariant systems, the one for systems with complete and
the one for systems with partial T-invariance violation. The
results of these fits are summarized in Table I. The fit is
accepted in just seven frequency intervals for the first case, it
is rejected in all but two intervals for the second case, and it
is accepted in all but one interval for the third case. In each
1 GHz window the fitted values of � agree with the values
determined in Sec. IV B. We conclude that the GOF test is a
powerful tool to uncover the small effects of partial
T-invariance violation on S-matrix fluctuation properties.

�ii� We inserted the fitted parameters into theoretical ex-
pressions for the distribution of the diagonal S-matrix ele-
ments and, in the case of T violation, for the elastic enhance-
ment factor. The results agreed well with the data. To the
best of our knowledge, this is the first time that the elas-
tic enhancement factor as function of the parameter � has
been investigated in such detail over such a large frequency
range.

As an additional test, we extended our measurements be-
yond the frequency range where only one vertical electric
mode in the resonator is excited. When two such modes are
excited, the resonator does not simulate a quantum billiard.
The fit of the theoretical result based on random-matrix
theory to the experimental data is rejected by the GOF test.
That was shown in Ref. �12� and is not reproduced here. We
have numerically simulated the S-matrix correlations for that
case under the assumption that the two modes of vertical
excitation do not interact, using for the random Hamiltonian
ensemble sets of real symmetric matrices consisting of two
diagonal blocks. Such matrices are commonly used to mimic
spectral properties of T-invariant chaotic systems with some
underlying symmetry. It was shown in Ref. �12� that our
simulations qualitatively reproduce the experimental auto-
correlation function. The failure of the GOF test shows that
our testing procedure is sensitive to the existence of such
symmetries.

We conclude that the theoretical expressions for the
S-matrix correlation functions, for the distribution of

S-matrix elements, and for the elastic enhancement factor
based on random-matrix theory, are in excellent agreement
with data measured on chaotic microwave billiards, both for
the T-invariant case and for the case with partial T-invariance
violation. Our work constitutes the most stringent test of the
statistical theory of quantum chaotic scattering yet done. The
success in the case of partial T-invariance violation shows
that the strength parameter � can be determined reliably from
scattering data. This is important in cases where that param-
eter cannot be reliably obtained theoretically from a dynami-
cal calculation like, for instance, the semiclassical approxi-
mation. The largest achieved values for the T-invariance
violation strength parameter � equals 0.3. Numerical calcu-
lations show that for this value the spectral fluctuations of
the Hamiltonian H for the closed resonator defined in Eq.
�11� almost coincide with those of the GUE �63�. We also
found that for �=0.4 they do not differ significantly from
those presented in Ref. �37�, where the conclusion was
drawn, that complete T breaking is achieved. However, even
for �=0.4 the value of Ccross�0� is still far from zero. This
shows that Ccross�0� is a particularly suitable measure of the
strength � of T violation.
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APPENDIX

For the derivation of the analytic expressions for the au-
tocorrelation function and the cross-correlation coefficient in
Eqs. �24�, �26�, and �27�, we used Efetov’s supersymmetry
approach in the form of Ref. �26�. Due to the symmetry-
breaking term in Eq. �11�, the integration over the Grass-
mann variables which involves determining terms of highest

TABLE I. Results of the GOF test for the billiard with ferrite at B=190 mT. In each case the first row gives the lower boundary of the
1 GHz frequency interval used for the analysis. The second �third� row indicates whether the GOF test for the autocorrelation function for
T invariance �full violation of T invariance, respectively� was accepted. This is indicated by a bullet. If both expressions are accepted, no
conclusions can be drawn and the column is marked by “�” signs. Results rejected by the fit are indicated by “-.” The fourth row shows
similarly acceptance or rejection of the expression for partial TRIV.

f �GHz� 1 2 3 4 5 6 7 8 9 10 11 12

No TRIV - • � • � • • • • • • •

TRIV - - � - � - - - - - - -

Partial • • • • • • • • • • • •

f �GHz� 13 14 15 16 17 18 19 20 21 22 23 24

No TRIV • • • • - - • • - • • -

TRIV - - - - - - - - - - - -

Partial • • • • • • • • • • - •
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�in our case eighth� order in the anticommuting variables, is
rather difficult. In Ref. �26� the integration was done with
Efetov’s original parametrization for the integration measure
and a method first developed in Ref. �64�. The starting point
was the generating functional

Z�	� = Detg−1�D̂ + Ĵ�	�� = exp�− Trg ln�D̂ + Ĵ�	��� .

�A1�

Here, Detg and Trg denote the graded determinant and trace
as defined in the supersymmetry formalism of Ref. �30�. The

inverse propagator D̂ and the matrix Ĵ are 4N�4N matrices.
Introducing the matrix

���
c = �Wc�Wc�. �A2�

we have for the inverse propagator D̂

D̂ = �f − Ĥ�I4 +
1

2
�L + i�L . �A3�

Here �=c�
c and Lpp�

���= �−1�p+1pp�
��� with p , p�=1,2

and � ,��=0,1 is the diagonal supermatrix that distinguishes

between the advanced �p=1� and retarded �p=2� parts of D̂.
The index �=0 denotes the commuting, �=1 the anticom-
muting components. The quantity 	 equals the difference of
the arguments of the S-matrix elements Sab�f −� /2� and

Sab
� �f +� /2�. The matrix Ĵ�	� is given as

Ĵ����	ab
1 �,�	ab

2 �� = �
a,b


j=1

2

I�j�Wa�	ab
j Wb�, �A4�

where the matrix I�j� with entries

Ipp�
����j� = �− 1�1+�pp�

���pj �A5�

is the projector onto the p= j block. With Eq. �8� we obtain

Sab�f − �/2�Sab
� �f + �/2� = 4 Tr �aD−1�f − �/2�

��b�D−1�f + �/2��†, �A6�

where Tr denotes the trace over the index � of the resonator
modes, and it can be checked that

Sab�f − �/2�Sab
� �f + �/2� =� �2

�	ab
1 � 	ba

2 Z�	��
	=0

. �A7�

Averaging over the ensemble H becomes feasible when we
write the generating functional as a Gaussian superintegral

Z�	� =� D� exp� i

2 
p,r,�

��̄pr
� ,��D̂ + Ĵ�	����pr

� 	� �A8�

over an eight-dimensional supervector �. The matrices D̂

and Ĵ have been extended to 8N�8N supermatrices,

D̂ = �D̂ 0

0 D̂T
� , �A9�

and

Ĵ = Ĵ��	ab
�S�1�,�	ab

�S�2�� � �1 0

0 1
�

+ Ĵ��	ab
�A�1�,�	ab

�A�2�� � �1 0

0 − 1
� , �A10�

where 	ab
�S�j and 	ab

�A�j are the parts of 	ab
j that are symmetric

and antisymmetric in the indices a and b, respectively. The
indices r ,r�=1,2 in Eq. �A8� arise due to the doubling of
dimension. The eight-component supervector � is given in
terms of the four-component supervector �p

� and its adjoint

�̄=�†s, where spp�
���= �−1���+1��1+p�pp�

��� as

� = � �
s�� �, �̄ =�†s . �A11�

The symmetrized form of the autocorrelation function,
1
2 �Sab�f −� /2�Sab

� �f +� /2�+Sba�f −� /2�Sba
� �f +� /2��, is ob-

tained by choosing the plus sign, that of the un-normalized
cross-correlation coefficient Re��Sab�f�Sba

� �f�	� by setting �
=0 and choosing the minus sign in

�1

4

�2

�	ab
�S�1 � 	ba

�S�2Z�	�S�,0��
	=0

��1

4

�2

�	ab
�A�1 � 	ba

�A�2Z�0,	�A���
	=0

.

�A12�

Ensemble averaging over the Hamiltonian H of the generat-
ing functional Eq. �A8� yields

�Z�	�	 =� D�eiL�S� exp�i
1

2 
p,�,r

��pr
� ,�� fI +

1

2
�L̂ + i�L̂

+ Ĵ�	����
pr

� �� , �A13�

where

L�S� = −
�2

4N
�trgS2 +

�2�2

N
trg�3S�3S� , �A14�

with the supermatrix Spr,p�r�
�,�� =��pr

� ����p�r�
�� ��� and

�rr�
3 = �−1�r+1rr�. The matrix L̂ is eight-dimensional. It results

from the doubling of dimension, L̂rr�=Lrr�. The quartic de-
pendence of L�S� on � is eliminated with help of a Hubbard-
Stratonovich transformation. After expanding the resulting
exponent in the large N limit in the small quantities � and
�2�2

N the remaining integral reads

�Z�	�	 =� DQeiLeff�Q�eiLsrc�Q;Ĵ�, �A15�

where Leff�Q�=Lfree�Q�+Lch�Q� and with Xc=�Nvc
2 �c.f.

Eq. �10��

iLfree = −
�2�2

4
trg�3Q�3Q + i

N�

4�
trgL̂Q ,

iLch = −
1

2
c

trg ln�I +
Xc

�
L̂Q� ,
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iLsrc = −
1

2
Trg ln�I +

Q

i�
�I +�L̂

Q

�
�−1

Ĵ�	�� . �A16�

Here, trg denotes the supertrace over the indices p ,� ,r, and
Trg includes the summation over the level index �. The 8
�8 supermatrix Q contains the commuting and the Grass-
mannian integration variables. For the integration Efetov’s
original parametrization of the Q matrix was used.

Before performing the integration �Z�	�	 needs to be
differentiated twice with respect to 	ab

j and 	ba
j at 	ab

j =0
and 	ba

j =0 for j=1,2, c.f. Eq. �A12�. Only terms of
second order in 	ab

j and 	ba
j survive. Since Ĵ�	� is linear

in 	ab, these are obtained from the second order term in
Ĵ of exp�− 1

2Trg ln�I+M̂Ĵ�� which equals 1
2 ��− 1

2Trg�M̂Ĵ��2

+ 1
2Trg�M̂ĴM̂Ĵ�� with M̂ = Q

i� �I+�L̂ Q
� �−1. Then we finally ob-

tain �see Eq. �A12��

�1

4

�2

�	ab
�S�1 � 	ba

�S�2Z�	�S�,0��
	=0

��1

4

�2

�	ab
�A�1 � 	ba

�A�2Z�0,	�A���
	=0

= −
1

2
� DQ exp�−

1

2
c

trg ln�I +
Xc

�
L̂Q� −

�2�2

4
trg��3Q�3Q� + i

N�

4�
trgL̂Q�

�
j=1

2 �trg�Q

Xa

�

�I +
Xa

�
L̂Q� Ij�1�

Xb

�

�I +
Xb

�
L̂Q� Ij�2���1 + ab�1� 1�

�1 �− 1� j�
2

�

+ trg�Q

Xa

�

�I +
Xa

�
L̂Q� I1�1��trg�Q

Xb

�

�I +
Xb

�
L̂Q� I1�2��ab�1� 1� + a ↔ b� . �A17�

For the integration over the Grassmann variables, we pro-
ceeded as in Appendix B of Ref. �26�. The result is a three-
fold integral. For arbitrary values of the transmission coeffi-
cients Tc, the expression for the autocorrelation function for
the case a�b is obtained from that given in Eq. �2� of Ref.
�51� by including in the integrand the factor exp�i ��d ��1�2
−�0�� arising for nonvanishing � from the last term in the
first line of Eq. �A16�. Here, �0 ,�1 ,�2 are the integration

variables. It is straightforward to compute the autocorrelation
function for the case a=b by proceeding as in Appendix B
of �26�. The result for the cross-correlation coefficient
is obtained by multiplying the second and the third
rectangular bracket in Eq. �2� of �51� by �−1�. All this
yields for the autocorrelation function and the cross-
correlation coefficient the expressions given in Eqs. �24�,
�26�, and �27�.

�1� H.-J. Stöckmann and J. Stein, Phys. Rev. Lett. 64, 2215
�1990�.

�2� S. Sridhar, Phys. Rev. Lett. 67, 785 �1991�.
�3� H.-D. Gräf, H. L. Harney, H. Lengeler, C. H. Lewenkopf, C.

Rangacharyulu, A. Richter, P. Schardt, and H. A. Weiden-
müller, Phys. Rev. Lett. 69, 1296 �1992�.

�4� C. Dembowski, H.-D. Gräf, A. Heine, R. Hofferbert, H. Reh-
feld, and A. Richter, Phys. Rev. Lett. 84, 867 �2000�; C. Dem-
bowski, B. Dietz, T. Friedrich, H.-D. Gräf, A. Heine, C. Mejía-
Monasterio, M. Miski-Oglu, A. Richter, and T. H. Seligman,
ibid. 93, 134102 �2004�; R. Hofferbert, H. Alt, C. Dembowski,
H.-D. Gräf, H. L. Harney, A. Heine, H. Rehfeld, and A. Rich-
ter, Phys. Rev. E 71, 046201 �2005�; C. Dembowski, B. Dietz,
T. Friedrich, H.-D. Gräf, H. L. Harney, A. Heine, M. Miski-

Oglu, and A. Richter, ibid. 71, 046202 �2005�.
�5� A. Richter, in Emerging Applications of Number Theory, The

IMA Volumes in Mathematics and its Applications, edited by
D. A. Hejhal, J. Friedmann, M. C. Gutzwiller, and A. M. Od-
lyzko �Springer, New York, 1999�, Vol. 109, p. 479.

�6� G. Casati, F. Valz-Gris, and I. Guarneri, Lett. Nuovo Cimento
28, 279 �1980�; M. V. Berry, Ann. Phys. �N.Y.� 131, 163
�1981�.

�7� O. Bohigas, M. J. Giannoni, and C. Schmit, Phys. Rev. Lett.
52, 1 �1984�.

�8� S. Heusler, S. Müller, A. Altland, P. Braun, and F. Haake,
Phys. Rev. Lett. 98, 044103 �2007�.

�9� H.-J. Stöckmann, Quantum Chaos—An Introduction �Cam-
bridge University Press, Cambridge, England, 1999�; F. Haake,

QUANTUM CHAOTIC SCATTERING IN MICROWAVE… PHYSICAL REVIEW E 81, 036205 �2010�

036205-17



Quantum Signatures of Chaos, 2nd ed. �Springer-Verlag, Ber-
lin, 2001�; Chaos and Quantum Physics, edited by M.-J. Gi-
annoni, A. Voros, and J. Zinn-Justin �Elsevier, Amsterdam,
1991�.

�10� S. Albeverio, F. Haake, P. Kurasov, M. Kuś, and P. Šeba, J.
Math. Phys. 37, 4888 �1996�; F. Haake, M. Kuś, P. Šeba, H.-J.
Stöckmann, and U. Stoffregen, J. Phys. A 29, 5745 �1996�;
H.-J. Stöckmann and P. Seba, ibid. 31, 3439 �1998�; X. Zheng,
T. M. Antonsen, and E. Ott, Electromagnetics 26, 3 �2006�; B.
Dietz, A. Heine, A. Richter, O. Bohigas, and P. Leboeuf, Phys.
Rev. E 73, 035201�R� �2006�.

�11� R. Blümel and U. Smilansky, Phys. Rev. Lett. 60, 477 �1988�.
�12� B. Dietz, T. Friedrich, H. L. Harney, M. Miski-Oglu, A. Rich-

ter, F. Schäfer, and H. A. Weidenmüller, Phys. Rev. E 78,
055204�R� �2008�.

�13� B. Dietz, T. Friedrich, H. L. Harney, M. Miski-Oglu, A. Rich-
ter, F. Schäfer, J. Verbaarschot, and H. A. Weidenmüller, Phys.
Rev. Lett. 103, 064101 �2009�.

�14� J. E. Lynn, The Theory of Neutron Resonance Reactions �Clar-
endon Press, Oxford, 1968�.

�15� T. Ericson, Phys. Rev. Lett. 5, 430 �1960�.
�16� T. E. O. Ericson and T. Mayer-Kuckuk, Annu. Rev. Nucl. Sci.

16, 183 �1966�; A. Richter, in Nuclear Spectroscopy and
Nuclear Reactions, Part B, edited by J. Cerny �Academic
Press, New York, 1974�, p. 343.

�17� G. Stania and H. Walther, Phys. Rev. Lett. 95, 194101 �2005�;
J. Madronero and A. Buchleitner, ibid. 95, 263601 �2005�; G.
L. Celardo, F. M. Izrailev, V. G. Zelevinsky, and G. P. Berman,
Phys. Rev. E 76, 031119 �2007�.

�18� M. Lawniczak, O. Hul, S. Bauch, P. Šeba, and L. Sirko, Phys.
Rev. E 77, 056210 �2008�.

�19� R. Schäfer, T. Gorin, T. H. Seligman, and H.-J. Stöckmann, J.
Phys. A 36, 3289 �2003�.

�20� J. B. French, V. K. B. Kota, A. Pandey, and S. Tomsovic, Phys.
Rev. Lett. 54, 2313 �1985�.

�21� T. E. O. Ericson, Phys. Lett. 23, 97 �1966�.
�22� C. Mahaux and H. A. Weidenmüller, Phys. Lett. 23, 100

�1966�.
�23� W. von Witsch, A. Richter, and P. von Brentano, Phys. Rev.

Lett. 19, 524 �1967�; E. Blanke, H. Driller, W. Glöckle, H.
Genz, A. Richter, and G. Schrieder, ibid. 51, 355 �1983�.

�24� D. Boosé, H. L. Harney, and H. A. Weidenmüller, Phys. Rev.
Lett. 56, 2012 �1986�; Z. Phys. A 325, 363 �1995�.

�25� H. L. Harney, A. Hüpper, and A. Richter, Nucl. Phys. A. 518,
35 �1990�.

�26� Z. Pluhař, H. A. Weidenmüller, J. A. Zuk, C. H. Lewenkopf,
and F. J. Wegner, Ann. Phys. 243, 1 �1995�.

�27� G. Bergmann, Phys. Rep. 107, 1 �1984�.
�28� J. de Rosny, A. Tourin, A. Derode, P. Roux, and M. Fink,

Phys. Lett. 95, 074301 �2005�.
�29� C. Mahaux and H. A. Weidenmüller, Shell Model Approach to

Nuclear Reactions �North Holland, Amsterdam, 1969�.
�30� J. J. M. Verbaarschot, H. A. Weidenmüller, and M. R. Zirn-

bauer, Phys. Lett. B 149, 263 �1984�; Phys. Rep. 129, 367
�1985�.

�31� A. Pandey, Ann. Phys. �N.Y.� 134, 110 �1981�.
�32� Y. V. Fyodorov, D. V. Savin, and H.-J. Sommers, J. Phys. A

38, 10731 �2005�.

�33� H. Primack and U. Smilansky, J. Phys. A 27, 4439 �1994�.
�34� W. R. Gibbs, Phys. Rev. 139, B1185 �1965�.
�35� P. J. Dallimore and I. Hall, Nucl. Phys. 88, 193 �1966�.
�36� J. M. Blatt and V. F. Weisskopf, Theoretical Nuclear Physics

�Wiley, New York, 1952�.
�37� P. So, S. M. Anlage, E. Ott, and R. N. Oerter, Phys. Rev. Lett.

74, 2662 �1995�.
�38� U. Stoffregen, J. Stein, H.-J. Stöckmann, M. Kuś, and F.

Haake, Phys. Rev. Lett. 74, 2666 �1995�.
�39� D. H. Wu, J. S. A. Bridgewater, A. Gokirmak, and S. M. An-

lage, Phys. Rev. Lett. 81, 2890 �1998�.
�40� O. Hul, S. Bauch, P. Pakonski, N. Savytskyy, K. Zyczkowski,

and L. Sirko, Phys. Rev. E 69, 056205 �2004�.
�41� M. Vraničar, M. Barth, G. Veble, M. Robnik, and H.-J. Stöck-

mann, J. Phys. A 35, 4929 �2002�.
�42� B. Dietz, T. Friedrich, H. L. Harney, M. Miski-Oglu, A. Rich-

ter, F. Schäfer, and H. A. Weidenmüller, Phys. Rev. Lett. 98,
074103 �2007�.

�43� H. P. Baltes and E. R. Hilf, Spectra of Finite Systems �Wissen-
schaftsverlag, Mannheim, 1976�.

�44� G. R. Satchler, Phys. Lett. 7, 55 �1963�.
�45� J. Ernst, H. L. Harney, and K. Kotajima, Nucl. Phys. A. 136,

87 �1969�.
�46� W. Kretschmer and M. Wangler, Phys. Rev. Lett. 41, 1224

�1978�.
�47� H. A. Weidenmüller and G. Mitchell, Rev. Mod. Phys. 81, 539

�2009�.
�48� D. V. Savin, Y. V. Fyodorov, and H. J. Sommers, Acta Phys.

Pol. A 109, 53 �2006�.
�49� K. B. Efetov, Adv. Phys. 32, 53 �1983�.
�50� J. J. M. Verbaarschot, Ann. Phys. �N.Y.� 168, 368 �1986�.
�51� U. Gerland and H. A. Weidenmüller, Europhys. Lett. 35, 701

�1996�.
�52� D. Agassi, H. A. Weidenmüller, and G. Mantzouranis, Phys.

Rep. 22, 145 �1975�.
�53� E. D. Davis and D. Boosé, Phys. Lett. B 211, 379 �1988�.
�54� E. D. Davis and D. Boosé, Z. Phys. A 332, 427 �1989�.
�55� B. Dietz, H. L. Harney, A. Richter, F. Schäfer, and H. A.

Weidenmüller, Phys. Lett. B 685, 263 �2010�.
�56� R. A. Méndez-Sánchez, U. Kuhl, M. Barth, C. H. Lewenkopf,

and H.-J. Stöckmann, Phys. Rev. Lett. 91, 174102 �2003�.
�57� U. Kuhl, M. Martínez-Mares, R. A. Méndez-Sánchez, and

H.-J. Stöckmann, Phys. Rev. Lett. 94, 144101 �2005�.
�58� O. Hul, O. Tymoshchuk, S. Bauch, P. M. Koch, and L. Sirko, J.

Phys. A 38, 10489 �2005�.
�59� U. Kuhl, R. Höhmann, J. Main, and H.-J. Stöckmann, Phys.

Rev. Lett. 100, 254101 �2008�.
�60� F. M. Dittes, H. L. Harney, and A. Müller, Phys. Rev. A 45,

701 �1992�.
�61� H. L. Harney, F. M. Dittes, and A. Müller, Ann. Phys. �N.Y.�

220, 159 �1992�.
�62� H. L. Harney, Bayesian Statistics—Parameter Estimation and

Decisions �Springer Verlag, Heidelberg, 2003�.
�63� O. Bohigas, M. J. Giannoni, A. M. Ozorio de Almeida, and C.

Schmit, Nonlinearity 8, 203 �1995�.
�64� A. Altland, S. Iida, A. Müller-Groeling, and H. A. Weiden-

müller, Ann. Phys. 219, 148 �1992�.

DIETZ et al. PHYSICAL REVIEW E 81, 036205 �2010�

036205-18


